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Abstract. A stability analysis of the contact line at the bottom of vapour stems is undertaken in
order to find out the dominant parameters responsible for the transition from nucleate boiling to
film boiling. For strong constraints, the increase in the evaporation rate depletes the macrolayer
and, as consequence, there is an enlargement of the dry areas. The second step of the boiling
crisis study is to establish the relationship between the macrolayer depletion and the vapour
column instability. The contact angle dynamics is very crucial to the occurrence of the crisis.
When the macrolayer becomes unstable, the columns are cut off and consequently break down.
We expect that before the macrolayer has been completely consumed the relative speed will
have reached the critical value at which the Kelvin–Helmholtz instability of the vapour columns
appears. It is clearly demonstrated that many kinds of instability participate in the boiling crisis.

1. Introduction

Heat and mass transfer in pool boiling remain most complicated phenomena, in spite of
the considerable amount of work done on the subject. A theory describing the pool-boiling
crisis was developed by Zuber (see [1]). This theory has gained wide acceptance among the
scientific community. It has many shortcomings which were encountered in the experimental
progress in the boiling field. Katto and Yokoya [2] introduced the existence of a liquid
macrolayer at the base of the columns whose breaking down is related to the depletion of
this macrolayer. New models have been developed to describe the steady state of the vapour
stems in the macrolayer—see for instance the review papers by Lienard [3] and by Katto [4]
and the recent paper by Lay and Dhir [5]. However, the occurrence of the instability which
causes the enlargement of the dry areas remains a challenging problem. The stems feeding
the vapour columns carrying heat through the liquid in the fully developed nucleate-boiling
state of pool boiling are ‘tied’ to the heater by a liquid-evaporating meniscus. This meniscus
is connected to the liquid macrolayer. The vapour recoil instability at the surface of the
evaporating meniscus may lead to the expulsion of the macrolayer by a very fast expansion
of the dry spot at the base of the stem. The contact angle of the liquid on the heater is a
key parameter in the stability analysis of the evaporating meniscus.

2. The stability of an evaporating meniscus

For an evaporating wedge, the shape of the meniscus may be approximated by a cone
tangential to the line of zero curvature in the vertical plane. In a 2D vertical cross section,
the shape of the meniscus is a straight-line tangent to the inflexion point (see figure 1).
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Figure 1. A 2D evaporating wedge. Figure 2. A 2D sine-perturbed evaporating wedge.

In the close vicinity of the evaporating surface, there exists a thermal layer of thickness
δth = x tanδα ≈ x δα, in which heat is transported only by conduction. For such a 2D
system with a vapour front moving with a velocity da/dt and turning with an angular
velocity dθ/dt it is easy to write the equations expressing the balances of the energy and
momentum in the liquid in a coordinate system attached to the moving front and having
the solid–liquid–vapour point as its origin. A stability analysis may then be performed by
the standard method of linear perturbation around the steady state obtained when the flux
of liquid from the macrolayer balances the flux of evaporation through the surface of the
meniscus. In the perturbed state, the surface is slightly altered from its initial shape—by a
sine mode (see figure 2).

A complete stability analysis of the thermal layer at a flat liquid–vapour interface with a
thermal gradient normal to the surface has been performed by Palmer [6]. He has introduced
a characteristic number (the Hickman number) for the vapour recoil instability. We have
adapted his method to the geometry of the meniscus in the region where the surface is
approximated by the tangential plane at the change of curvature (the inflexion point—see
figure 1).

For stationary perturbations (exchange of stability), the dimensionless perturbation
equations for momentum balances lead to the following expressions, where the pressure
has been eliminated by twice taking the curl of the momentum equations:

(D̃2 − k̃2)(D̃2 − k̃2 − Re D̃)ṽ′
z` = 0 in the liquid phase (1)

(D̃2 − k̃2)(D̃2 − k̃2 − Re NµD̃)ṽ′
zv = 0 in the vapour phase. (2)

The stationary-perturbation energy balance in the thermal layer reads

(D̃2 − k̃2 − Re P rD̃)T̃ ′ = ṽ′
z` 0 > z̃ > −1 (3)

(D̃2 − k̃2 − Re P rD̃)T̃ ′ = 0 outside the thermal layer

(
−1 > z̃ > − tanθ0

δα

)
. (4)

The solutions for the perturbation equations are obtained by the method of separation of
variables assuming a single sine mode along thex-coordinate on the vapour–liquid surface.
The solutions have to obey the following dimensionless boundary conditions.

(1) On the liquid–vapour surface (forz = 0):
(i) the relationship between the velocity perturbation in the vapour and the perturbation of
the evaporation rate;
(ii) mass balance;
(iii) the continuity of the tangential velocity;
(iv) the normal-momentum balance;
(v) the tangential-momentum balance;
(vi) energy balance.
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(2) On the heater surface (forz = x tanq0):
(a) all of the perturbations in velocity and temperature must vanish;
(b) the allowed dimensionless wave numbers must be odd multiples ofπ δα/2 tanθ0.

The following dimensionless numbers are introduced in the dimensionless differential
equations and in the dimensionless boundary conditions:

the Hickman number: Hi =
(

∂Vz

∂T

)
V ∗

z β(x δα)2µv

Dthσ ∗

[
1

ρv

− 1

ρ`

]
the Marangoni number: Ma = −

(
∂σ

∂T

)
β(x δα)2

µ`Dth

the Reynolds number: Re = V ∗
z ρ`(x δα)

µL

the crispation number: Cr = µ`Dth

σ ∗(x δα)

the Prandtl number: Pr = ν`

Dth

the Bond number: Bo = (x δα)2g(ρ` − ρv)

σ ∗

the Brinskman number: Br = V ∗
z ν2

`

βDth(x δα)2

the density ratio: Nρ = ρ`

ρv

the viscosity ratio: Nµ = µ`

µv

with β the unperturbed temperature gradient in the thermal boundary layerβ = ∂T /∂z, and
∂σ/∂T the temperature coefficient of the surface tension. Several of these depend on the
position on the surface and on the contact angleθ0 in the steady state. Indeed, among the
above dimensionless numbers the Hickman, the Reynolds, and the Brinskman numbers are
also functions ofx andθ0, through the steady evaporation rateV ∗

z , as shown by Moosman
and Homsy [7] (see figure 3).

Figure 3. The evaporative normal fluxVN as a function of the dimensionless distance from the
bulk of the meniscus (from Moosman and Homsy [7]).

This reveals that the meniscus instability will start in the neighbourhood of the contact
line, where the evaporation flux is a maximum, and for a critical contact angle. The
characteristic equation relates the local Hickman number to the dimensionless wavenumber
(k = kx δα) and the other dimensionless groups in the marginal state (the neutral stability
condition). A numerical resolution of the characteristic equation is now under way.



9568 A Steinchen and K Sefiane

3. Conclusion—a relationship with the peak heat flux?

If, statistically, all the menisci at the bottom of the vapour stems (or of the bubbles) have
reached a critical contact angle, the dry spots will grow and the vapour film will expand
over the whole heater surface, consuming as it does this the whole macrolayer. Such
cooperative instability cuts the vapour feed of the vapour columns, which will collapse,
with the consequence that the transition to film boiling will take place, accompanied by
a boiling crisis. The same scenario may occur under microgravity conditions—the only
difference is that large bubbles remain on the heater and the expansion of the vapour at
the bottom of the bubbles will favour the aggregation of large bubbles by the expulsion
of the macrolayer. This could explain the peak heat flux observed also under low-gravity
conditions.
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